Submodularity in Machine Learning
- New Directions -

Andreas Krause
Stefanie Jegelka
Network Inference

How learn who influences whom?
Summarizing Documents

How select representative sentences?
MAP inference

\[
\max_x p(x \mid z)
\]

How find the MAP labeling in discrete graphical models efficiently?
What’s common?

Formalization:

Optimize a set function $F(S)$ under constraints

generally very hard

but: structure helps!
... if F is submodular, we can ...

- solve optimization problems with strong guarantees
- solve some learning problems
Outline

- What is submodularity?
 - Optimization
 - Minimization
 - Maximization
 - Learning
 - Learning for Optimization: new settings

Part I

Break

Part II

many new results! 😊
Outline

- What is submodularity?
 many new results! 😊

- Optimization
 - Minimization: new algorithms, constraints
 - Maximization: new algorithms (unconstrained)

- Learning
 - Learning for Optimization: new settings

... and many new applications!
submodularity.org
slides, links, references, workshops, ...
Example: placing sensors

Place sensors to monitor temperature
Set functions

- finite ground set $V = \{1, 2, \ldots, n\}$
- set function $F : 2^V \to \mathbb{R}$

will assume $F(\emptyset) = 0$ (w.l.o.g.)

assume black box that can evaluate $F(A)$ for any $A \subseteq V$
Example: placing sensors

Utility $F(A)$ of having sensors at subset A of all locations

A={1,2,3}: Very informative
High value $F(A)$

A={1,4,5}: Redundant info
Low value $F(A)$
Marginal gain

- Given set function $F : 2^V \rightarrow \mathbb{R}$

- Marginal gain: $\Delta_F(s \mid A) = F(\{s\} \cup A) - F(A)$

new sensor s
Decreasing gains: submodularity

placement A = \{1,2\}

placement B = \{1,...,5\}

Big gain

\[A \subseteq B \]

\[F(A \cup s) - F(A) \]

\[\Delta(s \mid A) \]

Adding helps a lot! Adding doesn't help much!

new sensor s

+ \cdot s

+ \cdot s

small gain
Equivalent characterizations

- **Diminishing gains:** for all $A \subseteq B$

 $$F(A \cup s) - F(A) \geq F(B \cup s) - F(B)$$

- **Union-Intersection:** for all $A, B \subseteq V$

 $$F(A) + F(B) \geq A \cup B, F(A \cup B) + F(A \cap B)$$
Questions

How do I prove my problem is submodular?

Why is submodularity useful?
Example: Set cover

Node predicts values of positions with some radius

Possible locations V

place sensors in building

goal: cover floorplan with discs

$A \subseteq V$: $F(A) =$

“area covered by sensors placed at A”

Formally:

Finite set W, collection of n subsets $S_i \subseteq W$

For $A \subseteq V$ define $F(A) = \left| \bigcup_{i \in A} S_i \right|$
Set cover is submodular

\[A = \{s_1, s_2\} \]

\[B = \{s_1, s_2, s_3, s_4\} \]

\[F(A \cup \{s'\}) - F(A) \geq F(B \cup \{s'\}) - F(B) \]

B = \{s_1, s_2, s_3, s_4\}
More complex model for sensing

Joint probability distribution

\[P(X_1, \ldots, X_n, Y_1, \ldots, Y_n) = P(Y_1, \ldots, Y_n) P(X_1, \ldots, X_n | Y_1, \ldots, Y_n) \]

\(Y_s \): temperature at location \(s \)

\(X_s \): sensor value at location \(s \)

\(X_s = Y_s + \text{noise} \)
Example: Sensor placement

Utility of having sensors at subset A of all locations

$$F(A) = H(Y) - H(Y | X_A)$$

Uncertainty about temperature Y before sensing

Uncertainty about temperature Y after sensing

A=$\{1,2,3\}$: High value $F(A)$

A=$\{1,4,5\}$: Low value $F(A)$
Submodularity of Information Gain

\[Y_1, \ldots, Y_m, X_1, \ldots, X_n \] discrete RVs
\[
F(A) = I(Y; X_A) = H(Y) - H(Y \mid X_A)
\]

- \(F(A) \) is NOT always submodular

If \(X_i \) are all conditionally independent given \(Y \), then \(F(A) \) is submodular!

[Krause & Guestrin `05]

Proof:
“information never hurts”
Example: costs

cost: time to reach shop + price of items

ground set V

each item 1 $\$"

breakfast??

Market 1

Market 2

Market 3
Example: costs

cost:
 time to shop
 + price of items

\[F(\text{coffee, sandwich}) = \text{cost(} \text{coffee} \text{) + cost(} \text{sandwich, melon} \text{)} \]

\[= t_1 + 1 + t_2 + 2 \]

\[= \#\text{shops} + \#\text{items} \]

submodular?
Shared fixed costs

\[\Delta(b \mid A) = 1 + t_3 \]
\[\Delta(b \mid B) = 1 \]

marginal cost: \#new shops + \#new items

decreasing \(\Rightarrow\) cost is submodular!

- shops: shared fixed cost
- economies of scale
Another example: Cut functions

V={a,b,c,d,e,f,g,h}

\[F(A) = \sum_{s \in A, t \notin A} w_{s,t} \]

Cut function is submodular!
Why are cut functions submodular?

Submodular if \(w \geq 0 \! \)
Closedness properties

F_1, \ldots, F_m submodular functions on V and $\lambda_1, \ldots, \lambda_m > 0$

Then: $F(A) = \sum_i \lambda_i F_i(A)$ is submodular

Submodularity closed under nonnegative linear combinations!

Extremely useful fact:
- $F_\theta(A)$ submodular $\implies \sum_\theta P(\theta) F_\theta(A)$ submodular!
- Multicriterion optimization
- A basic proof technique! 😊
Other closedness properties

Restriction: \(F(S) \) submodular on \(V \), \(W \) subset of \(V \)

Then \(F'(S) = F(S \cap W) \) is submodular
Other closedness properties

- **Restriction**: $F(S)$ submodular on V, W subset of V

 Then $F'(S) = F(S \cap W)$ is submodular

- **Conditioning**: $F(S)$ submodular on V, W subset of V

 Then $F'(S) = F(S \cup W)$ is submodular
Other closedness properties

- **Restriction**: \(F(S) \) submodular on \(V \), \(W \) subset of \(V \)

 Then \(F'(S) = F(S \cap W) \) is submodular

- **Conditioning**: \(F(S) \) submodular on \(V \), \(W \) subset of \(V \)

 Then \(F'(S) = F(S \cup W) \) is submodular

- **Reflection**: \(F(S) \) submodular on \(V \)

 Then \(F'(S) = F(V \setminus S) \) is submodular
Submodularity ...

discrete convexity

... or concavity?
Convex aspects

- convex extension
- duality
- efficient minimization

But this is only half of the story...
Concave aspects

- **submodularity:**
 \[A \subseteq B, \ s \notin B : \]
 \[F(A \cup s) - F(A) \geq F(B \cup s) - F(B) \]

- **concavity:**
 \[a \leq b, \ s > 0 : \]
 \[f(a + s) - f(a) \geq f(b + s) - f(b) \]
Submodularity and concavity

- Suppose \(g : \mathbb{N} \rightarrow \mathbb{R} \) and \(F(A) = g(|A|) \)

\[F(A) \text{ submodular if and only if } \ldots \text{ } g \text{ is concave} \]
Maximum of submodular functions

- $F_1(A), F_2(A)$ submodular. What about

$$F(A) = \max\{ F_1(A), F_2(A) \} \quad ?$$

$F(A) = \max(F_1(A),F_2(A))$

$max(F_1,A,F_2) \text{ not submodular in general!}$
Minimum of submodular functions

Well, maybe $F(A) = \min(F_1(A), F_2(A))$ instead?

<table>
<thead>
<tr>
<th></th>
<th>$F_1(A)$</th>
<th>$F_2(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>{}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>{a}</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>{b}</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>{a,b}</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$F(\{b\}) - F(\{\}) = 0 < F(\{a,b\}) - F(\{a\}) = 1$

$\min(F_1, F_2)$ not submodular in general!
Two faces of submodular functions

- Convex aspects ➔ minimization!
- Concave aspects ➔ maximization!
What to do with submodular functions

Optimization
- Minimization
- Maximization

Learning
- Online/adaptive optim.
What to do with submodular functions

Optimization
 Minimization
 Maximization

Learning
 Online/ adaptive optim.

Minimization and maximization not the same??
Submodular minimization

\[
\min_{S \subseteq V} F(S)
\]

- Clustering
- MAP inference
- Structured sparsity regularization
- Minimum cut
Submodular minimization

\[\min_{S \subseteq V} F(S) \]

→ submodularity and convexity
Set functions and energy functions

any set function with $|V| = n$

$F : 2^V \rightarrow \mathbb{R}$

... is a function on binary vectors!

$F : \{0, 1\}^n \rightarrow \mathbb{R}$

pseudo-boolean function
Submodularity and convexity

Lovász extension

extension

\[f : [0, 1]^n \to \mathbb{R} \]

\[F : \{0, 1\}^n \to \mathbb{R} \]

Lovász extension

\[f(x) = \max_{y \in P_F} x \cdot y \]

convex

Lovász, 1982

- minimum of \(f \) is a minimum of \(F \)
- submodular minimization as convex minimization:
 polynomial time!

Grötschel, Lovász, Schrijver 1981
Submodularity and convexity

\[F : \{0, 1\}^n \rightarrow \mathbb{R} \quad \text{extension} \quad f : [0, 1]^n \rightarrow \mathbb{R} \]

Lovász extension

\[f(x) = \max_{y \in P_F} x \cdot y \]

convex

Lovász, 1982

- Minimum of \(f \) is a minimum of \(F \)
- Submodular minimization as convex minimization: polynomial time!
The submodular polyhedron P_F

$$P_F = \{ x \in \mathbb{R}^n : x(A) \leq F(A) \text{ for all } A \subseteq V \}$$

$${\color{red} x(A) = \sum_{i \in A} x_i}$$

Example: $V = \{a,b\}$

<table>
<thead>
<tr>
<th>A</th>
<th>$F(A)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>${}$</td>
<td>0</td>
</tr>
<tr>
<td>${a}$</td>
<td>-1</td>
</tr>
<tr>
<td>${b}$</td>
<td>2</td>
</tr>
<tr>
<td>${a,b}$</td>
<td>0</td>
</tr>
</tbody>
</table>

$${\color{red} x(\{a\}) \leq F(\{a\})}$$

$${\color{red} x(\{}) \leq F(\{})}$$

$${\color{red} x(\{b\}) \leq F(\{b\})}$$

$${\color{red} x(\{a,b\}) \leq F(\{a,b\})}$$
Evaluating the Lovász extension

\[P_F = \{ x \in \mathbb{R}^n : x(A) \leq F(A) \text{ for all } A \subseteq V \} \]

Linear maximization over \(P_F \)

\[f(x) = \max_{y \in P_F} x \cdot y \]

Exponentially many constraints!!! 😞

Computable in \(O(n \log n) \) time 😊

[Edmonds ‘70]

greedy algorithm:

- sort \(x \)
- order defines sets \(S_i = \{1, \ldots, i\} \)
- \(y_i = F(S_i) - F(S_{i-1}) \)

• Subgradient
• Separation oracle
Lovász extension: example

\[F(a) \]
\[F(b) \]
\[F(a,b) \]

\[f(x) \]

\[A \quad F(A) \]
\[\{\} \quad 0 \]
\[\{a\} \quad 1 \]
\[\{b\} \quad 0.8 \]
\[\{a,b\} \quad 0.2 \]
Submodular minimization

\[
\min_{A \subseteq V} F(A)
\]

- minimize convex extension
- combinatorial algorithms

- ellipsoid algorithm [Grötschel et al. 81]
- subgradient method, smoothing [Stobbe & Krause 10]
- duality: minimum norm point algorithm [Fujishige & Isotani 11]
- Fulkerson prize
 Iwata, Fujishige, Fleischer 01 & Schrijver 00
- state of the art:
 \[O(n^4T + n^5\log M)\] [Iwata 03]
 \[O(n^6 + n^5T)\] [Orlin 09]

\[T = \text{time for evaluating } F\]
The minimum-norm-point algorithm

Example: \(V = \{a, b\} \)

Regularized problem

\[
\min_{x \in [0, 1]^n} f(x) + \frac{1}{2} \|x\|^2
\]

\[
u^* = \arg \min_{u \in B_F} \frac{1}{2} \|u\|^2
\]

Base polytope \(B_F \)

\[
A^* = \{ i \mid u^*(i) \leq 0 \}
\]

minimizes \(F \):

\[
A^* = \arg \min_{A \subseteq V} F(A)
\]

Fujishige ‘91, Fujishige & Isotani ‘11
The minimum-norm-point algorithm

1. find \(u^* = \arg \min_{u \in B_F} \frac{1}{2} \|u\|^2 \)
2. \(A^* = \{ i \mid u^*(i) \leq 0 \} \)

can we solve this??

yes! 😊

recall: can solve linear optimization over \(P_F \)
similar: optimization over \(B_F \) ➔ can find \(u^* \)

(Frank-Wolfe algorithm)

Fujishige ‘91, Fujishige & Isotani ‘11
Empirical comparison

Cut functions from DIMACS Challenge

Minimum norm point algorithm: usually orders of magnitude faster

[Fujishige & Isotani ’11]
Applications?
Many natural signals sparse in suitable basis. Can exploit for learning/regularization/compressive sensing...
Sparse reconstruction

\[\min_x \| y - Mx \|^2 + \lambda \Omega(x) \]

- explain \(y \) with few columns of \(M \): few \(x_i \)

 discrete regularization on support \(S \) of \(x \)

 \[\Omega(x) = \|x\|_0 = |S| \]

 relax to convex envelope

 \[\Omega(x) = \|x\|_1 \]

in nature: sparsity pattern often not random...
Structured sparsity

Incorporate tree preference in regularizer?

Set function:

\[F(T) < F(S) \]

if \(T \) is a tree and \(S \) not
\[|S| = |T| \]

\[F(S) = \left| \bigcup_{s \in S} \text{ancestors}(s) \right| \]
Structured sparsity

Incorporate tree preference in regularizer?

Set function:

\[F(T) < F(S) \]

If \(T \) is a tree and \(S \) not, \(|S| = |T| \)

\[F(S) = \left| \bigcup_{s \in S} \text{ancestors}(s) \right| \]

\[F(T) = 3 \]
Structured sparsity

Incorporate tree preference in regularizer?

Set function:

\[F(T) < F(S) \]

If \(T \) is a tree and \(S \) not,
\[|S| = |T| \]

Function \(F \) is ...

submodular! 😊

\[F(T) = 3 \]
Sparsity

\[
\min_x \|y - Mx\|^2 + \lambda \Omega(x)
\]

- explain \(y\) with few columns of \(M\): few \(x_i\)
- prior knowledge: patterns of nonzeros
- discrete regularization on support \(S\) of \(x\)
 \[\Omega(x) = \|x\|_0 = |S|\]
- submodular function
 \[\Omega(x) = F(S)\]
- Lovász extension
 \[\Omega(x) = f(|x|)\]
- Optimization: submodular minimization

[Bach `10]
Further connections: Dictionary Selection

$$\min_x \|y - Mx\|^2 + \lambda \Omega(x)$$

Where does the dictionary M come from?

Want to learn it from data: $\{y_1, \ldots, y_n\} \subseteq \mathbb{R}^d$

Selecting a dictionary with near-max. variance reduction

\Leftrightarrow Maximization of approximately submodular function

[Krause & Cevher ‘10; Das & Kempe ‘11]
Example: MAP inference

\[
\max_{\mathbf{x} \in \{0,1\}^n} \quad P(\mathbf{x} \mid \mathbf{z}) \propto \exp(-E(\mathbf{x}; \mathbf{z}))
\]

\[\Leftrightarrow \quad \min_{\mathbf{x} \in \{0,1\}^n} \quad E(\mathbf{x}; \mathbf{z})\]
Example: MAP inference

Recall: equivalence

\[\max_{x \in \{0, 1\}^n} P(x | z) \propto \exp(-E(x; z)) \]

\[E(e_A; z) = F(A) \]

if \(F \) is submodular (attractive potentials), then MAP inference = submodular minimization!

polynomial-time
Special cases

Minimizing general submodular functions:

- poly-time, but not very scalable

Special structure ➔ faster algorithms

- Symmetric functions
- Graph cuts
- Concave functions
- Sums of functions with bounded support
- ...

62
MAP inference

\[
\min_{\mathbf{x} \in \{0,1\}^n} E(\mathbf{x}; \mathbf{z}) = \sum_i E_i(x_i) + \sum_{ij} E_{ij}(x_i, x_j) \equiv \min_{A \subseteq V} F(A)
\]

if each \(E_{ij}\) is submodular:

\[
E_{ij}(1,0) + E_{ij}(0,1) \geq E_{ij}(0,0) + E_{ij}(1,1)
\]

then \(F\) is a graph cut function.

MAP inference = Minimum cut: fast 😊
Potential functions defined on sets of pixels with conventional guarantees and thus may produce bad results. In this paper we propose an algorithm that can compute the solution of

\[E(x) = \sum_i E_i(x_i) + \sum_{ij} E_{ij}(x_i, x_j) \]

Pixels in one tile should have the same label

[Shotton et al. `09]
Enforcing label consistency

Pixels in a superpixel should have the same label

\[E(x) \leq \gamma_{\text{max}} \]

concave function of cardinality \(\Rightarrow \) submodular

> 2 arguments: Graph cut ??
Higher-order functions as graph cuts?

\[\sum_i E_i(x_i) + \sum_{ij} E_{ij}(x_i, x_j) + \sum_c E_c(x_c) \]

General strategy:
reduce to pairwise case by adding auxiliary variables

- works well for some particular \(E_c(x_c) \).
 [Billionet & Minoux `85, Freedman & Drineas `05, Živný & Jeavons `10, ...]

- necessary conditions complex and
 not all submodular functions equal such graph cuts
 [Živný et al.‘09]
Fast approximate minimization

- Not all submodular functions can be optimized as graph cuts
- Even if they can: possibly many extra nodes in the graph 😞

Other options?
- minimum norm algorithm
- other special cases:
 - e.g. parametric maxflow
 - [Fujishige & Iwata ‘99]

Approximate! 😊
Every submodular function can be approximated by a series of graph cut functions
- [Jegelka, Lin & Bilmes ‘11]
Fast approximate minimization

- Not all submodular functions can be optimized as graph cuts
- Even if they can: possibly many extra nodes in the graph 😞

Approximate! 😊

decompose:
- represent as much as possible exactly by a graph
- rest: approximate iteratively by changing edge weights

solve a series of cut problems
Other special cases

- Symmetric:
 - Queyranne’s algorithm: $O(n^3)$
 \[F(S) = F(V \setminus S) \]
 [Queyranne, 1998]

- Concave of modular:
 \[F(S) = \sum_i g_i \left(\sum_{s \in S} w(s) \right) \]
 [Stobbe & Krause ‘10, Kohli et al, ‘09]

- Sum of submodular functions, each bounded support
 [Kolmogorov ‘12]
Submodular minimization

- unconstrained: \(\min F(A) \quad \text{s.t.} \quad A \subseteq V \)
 - nontrivial algorithms, polynomial time

- constraints: e.g. \(\min F(A) \quad \text{s.t.} \quad |A| \geq k \)
 - limited cases doable:
 - odd/even cardinality, inclusion/exclusion of a set

Special case: balanced cut

General case: \textbf{NP hard}
- hard to approximate within polynomial factors!
- \textbf{But:} special cases often still work well

[Lower bounds: Goel et al. `09, Iwata & Nagano `09, Jegelka & Bilmes `11]
Constraints

minimum...

cut matching path spanning tree

ground set: edges in a graph

\[
\min_{S \in \mathcal{C}} \sum_{e \in S} w(e) \quad \Rightarrow \quad \min_{S \in \mathcal{C}} F(S)
\]
Recall: MAP and cuts

binary labeling: $x = e_A$

pairwise random field:

$E(x) = \text{Cut}(A)$

What’s the problem?

minimum cut: prefer short cut = short object boundary
Minimum cut

implicit criterion:
short cut = short boundary

minimize
sum of edge weights

\[F(C) = \sum_{e \in C} w(e) \]

Minimum cooperative cut

new criterion:
boundary may be long if the boundary is homogeneous

minimize
submodular function of edges

\[F(C) \]

not a sum of edge weights!
Reward co-occurrence of edges

sum of weights: use few edges

submodular cost function: use few groups S_i of edges

$$F(C) = \sum_i F_i(C \cap S_i)$$

25 edges, 1 type
7 edges, 4 types
Results

Graph cut

Cooperative cut
Optimization?

- not a standard graph cut
- MAP viewpoint:
 - global, non-submodular energy function
Constrained optimization

\[
\min_{S \in \mathcal{C}} F(S)
\]

approximate optimization

- convex relaxation
- minimize surrogate function

approximation bounds dependent on \(F \):
- polynomial \(O(n) \)
- constant \((1 + \epsilon) \)

[Goel et al.`09, Iwata & Nagano `09, Goemans et al. `09, Jegelka & Bilmes `11, Iyer et al. ICML `13, Kohli et al `13...]

Efficient constrained optimization

minimize a series of surrogate functions

1. compute linear upper bound
 \[\hat{F}^i(S^i) = F(S^i) \]
 \[\hat{F}^i(S) = \sum_{e \in S} w^i(S) \]

2. Solve easy sum-of-weights problem:
 \[S'^i = \arg \min_{S \in C} \hat{F}^i(S) \]
 and repeat.

- efficient
- only need to solve sum-of-weights problems
- unifying viewpoint of submodular min and max
see Wed best student paper talk

[Jegelka & Bilmes `11, Iyer et al. ICML `13]
Submodular min in practice

- Does a special algorithm apply?
 - symmetric function? graph cut? approximately?
- Continuous methods: *convexity*
 - minimum norm point algorithm

- Other techniques [not addressed here]
 - LP, column generation, ...
- Combinatorial algorithms: relatively high complexity

- Constraints: hard
 - majorize-minimize or relaxation
Outline

- What is submodularity?

- Optimization
 - Minimize costs
 - Maximize utility

- Learning
 - Learning for Optimization: new settings

Part I

Break!

Part II

see you in half an hour 😊